Disease Progression Modeling

Irene Y. Chen

PhD Student, Electrical Engineering and Computer Science

How can we learn how a disease will progress?

Disease Burden

Time

Time

What is disease burden?

- Symptoms
 - Cognitive ability
 - Site specific pain
 - Function loss
- Biomarkers
 - Vital signs, e.g. blood pressure
 - Organ health, e.g. brain volume
 - Antibody levels in blood
- **Question**: does disease burden only increase?

What exists clinically now?

ACC/AHA:

GrepMed, Heart Failure Staging

What exists clinically now?

	Early PD		Mid-stage PD	Advanced PD	
Stage of Parkinson's Disease	1	2	3	4	5
Severity of Symptoms	MILD Symptoms of PD are mild and only seen on one side of the body (unilateral involvement)	MILD Symptoms of PD on both sides of the body (bilateral involvement) or at the midline	MODERATE Symptoms of PD are characterized by loss of balance and slowness of movement	SEVERE Symptoms of PD are severely disabling	SEVERE Symptoms of PD are severe and are characterized by an inability to rise
	SYMPTOMS Tremor of one hand Rigidity Clumsy Leg One side of the face may be affected, impacting the expression	SYMPTOMS Loss of facial expression on both sides Decreased blinking Speech abnormalities Rigidity of the muscles in the trunk	SYMPTOMS Balance is compromised Inability to make the rapid, automatic and involuntary adjustments All other symptoms of PD are present	SYMPTOMS Patients may be able to walk and stand unassisted, but they are noticeably incapacitated Patient is unable to live an independent life and needs assistance	SYMPTOMS Patients fall when standing or turning May freeze or stumble when walking Hallucinations or delusions.

Parkinsonsdisease.net

What data could we have access to?

- Longitudinal vs cross-sectional
 - UK Biobank (cross-sectional)
 - Electronic health records (cross-sectional OR longitudinal)
 - Insurance claims (longitudinal)
 - Disease registries (longitudinal)
- Multimodal
 - ► Clinical biomarkers, medical imaging, clinical notes, etc

Today's talk

- ► What is disease progression?
- Three approaches to disease progression
- What could go wrong?
- Pop quiz

Approach 1: Supervised learning

Goal: Predict disease status for 6, 12, 18, and 24 months separately.

Challenge:

- Separate prediction tasks
- Assumes constant measurement
- ► Labels are very noisy
- ► Fewer time points as time progresses

Approach 1: Supervised learning

Goal: Predict disease status for 6, 12, 18, and 24 months separately.

Number of patients M months after baseline (Alzheimer's Disease Neuroimaging Initiative)

M06	M12	M24	M36	M48
648	642	569	389	87

M06 = 6 months after baseline

Zhou et al, "A multi-task learning formulation ...", KDD 2012.

Approach 2: Multi-task learning

- Goal: Predict disease status for 6, 12, 18, and 24 months jointly.
- Idea: Treat problem as a *multi-task* learning problem where learning for 12 months would impact learning for 18 months.
 - Use common biomarkers across all time
 - Allow for specific biomarkers at specific times
 - Incorporate temporal smoothing

Convex fused sparse group lasso

Simultaneously learn multiple outputs by solving

$$\min_{W} \|XW - Y\|_{F}^{2} + \theta_{1} \|W\|_{F}^{2} + \theta_{2} \sum_{i=1}^{t-1} \|w^{i} - w^{i+1}\|_{2}^{2}$$
squared loss between
outcomes Y, learned weights
W, and biomarkers X
$$\lim_{W \to W} |W|_{F}^{2} + \theta_{2} \sum_{i=1}^{t-1} \|w^{i} - w^{i+1}\|_{2}^{2}$$
temporal
smoothing
between times

Zhou et al, "A multi-task learning formulation ...", KDD 2012.

Convex fused sparse group lasso

Simultaneously learn multiple outputs by solving

$$\min_{W} \|S \odot (XW - Y)\|_{F}^{2} + \theta_{1} \|W\|_{F}^{2} + \theta_{2} \|WH\|_{F}^{2} + \delta \|W\|_{2,1}$$
Allow for missing values
with mask S
$$\lim_{W \to W} |W|_{F} + \frac{1}{2} \|WH\|_{F}^{2} + \frac{1}{2} \|WH\|_{F}^{2} + \frac{1}{2} \|WH\|_{2,1}$$

$$\lim_{W \to W} |W|_{2,1} + \frac{1}{2} \|WH\|_{F}^{2} + \frac{1}{2} \|WH\|_{F}^{2} + \frac{1}{2} \|WH\|_{2,1}$$

$$\lim_{W \to W} |W|_{2,1} + \frac{1}{2} \|WH\|_{F}^{2} + \frac{1}{2} \|WH\|_{F}^{2} + \frac{1}{2} \|WH\|_{2,1}$$

$$\lim_{W \to W} |W|_{2,1} + \frac{1}{2} \|WH\|_{F}^{2} +$$

Zhou et al, "A multi-task learning formulation ...", KDD 2012.

Multi-task prediction for disease and time

Razavian et al, "Multi-task Prediction of Disease Onsets from Longitudinal Lab Tests," 2016.

Multi-task prediction for disease and time

- **Data:** Longitudinal lab test values from insurance claims
- Goal: Early diagnosis across diseases for a fixed future time window

Razavian et al, "Multi-task Prediction of Disease Onsets from Longitudinal Lab Tests," 2016.

Approach 3: Unsupervised learning

- Goal: What if we learned continuously without specifying outcome of interest?
- Idea: How can we use unsupervised learning to find patterns in data for more robust learning
 - Hidden Markov Models
 - Recurrent Neural Networks
 - Single cell biology

Approach 3a: Hidden Markov Models

▶ Goal: We can model our data with a HMM

► $p(x_{123}, z_{123}) = p(x_1|z_1) p(x_2|z_2) p(x_3|z_3) p(z_3|z_2) p(z_2|z_1) p(z_1|z_0)$

Krishnan et al, "Structured Inference Networks for Nonlinear State Space Models," 2016.

Approach 3a: Hidden Markov Models

- Idea: We use variational inference to learn single parametric function f(x) for variational distribution q(z|f(x))
- You can run a RNN backwards and use the hidden states

Krishnan et al, "Structured Inference Networks for Nonlinear State Space Models," 2016.

Approach 3b: Recurrent NNs

- Goal: learn "memoryful" dynamics with attentive state space
- Idea: progression from a long time ago could impact future disease state

Attention Weights

- ► **Goal**: How can we learn from cross-sectional data?
- Idea: If we observe enough data across all stages, we can learn alignment.
- For 1-D case for a meaningful biomarker, we can place values across a line.

Today's talk

- ► What is disease progression?
- Three approaches to disease progression
- What could go wrong?
- Quiz time

What are potential complications?

- Subtypes
- Treatment policies from clinicians
- Misaligned / censored data
- Non-stationarity

Time

What if there are different subtypes?

- Asthma: 1) transient early wheezers, 2) persistent wheezers,
 3) late onset wheezers
- Autism: 1) seizures, 2) gastrointestinal, 3) psychiatric, and 3) unknown.
- Heart failure: 1) reduced ejection fraction and 2) preserved ejection fraction (three types as well)
- ► *Challenge*: how do we separate subtype and progression?

Deliu et al; *Pulmonary Therapy* 2016
 Doshi-Velez et al; *Pediatrics*, 2014.
 Shah et al; *Circulation*, 2016.

Can we learn stage and subtype jointly?

- Learn stages and subtypes of Alzheimer's disease
- Assume piecewise linear functions for separate subtypes
- Infer latent parameters through MCMC

Young et al, "Uncovering the heterogeneity ...", Nature Communications 2018.

- Problem: Patients may enter the system at different times
 - Access to care
 - Switch hospitals so records begin in the middle of progression
- Problem: Patients may leave the system
 - If we align by death: not enough data
 - Patients can also leave system without defined labels about outcome

time

- Problem: Patients may enter the system at different times
 - Access to care
 - Switch hospitals so records begin in the middle of progression
- Problem: Patients may leave the system
 - If we align by death: not enough data
 - Patients can also leave system without defined labels about outcome

- Problem: Patients may enter the system at different times
 - Access to care
 - Switch hospitals so records begin in the middle of progression
- Problem: Patients may leave the system
 - If we align by death: not enough data
 - Patients can also leave system without defined labels about outcome

Disease burden

- Problem: Patients may enter the system at different times
 - Access to care
 - Switch hospitals so records begin in the middle of progression
- Problem: Patients may leave the system
 - If we align by death: not enough data
 - Patients can also leave system without defined labels about outcome

time

- Problem: Patients may enter the system at different times
 - Access to care
 - Switch hospitals so records begin in the middle of progression
- Problem: Patients may leave the system
 - If we align by death: not enough data
 - Patients can also leave system without defined labels about outcome

Non-stationarity: The future is the ultimate confounder

- Predict MIMIC-III patient mortality based on 181 lab and vitals, aggregated based on clinical domain knowledge
- Train on all prior years
- Model performance can degrade over time

FAQs: Where is the deep learning?

FAQs: Where is the deep learning?

- 1. Any function can be fit with a deep net.
 - Supervised learning
 - Multi-task learning
 - Transition functions of Markov model
- 2. Learn low-dimensional representation and fit any model on top of that

FAQs: How do we measure success?

FAQs: How do we measure success?

- 1. Prediction tasks have accuracy metrics
- 2. Unsupervised learning have log-likelihood
- 3. Compare against clinical guidelines

FAQs: How is this same/different to RL?

FAQs: How is this same/different to RL?

- 1. If we assume all patients treated the same, we can ignore treatments entirely
- 2. In RL, we have rewards each time step (unless POMDP)
- 3. Disease progression modeled as RL may run into concerns about lack of decision support

Looking forward

- Disease progression is a nail with many hammers. Depending on clinical needs, we can model with great simplicity or great complexity.
- There exit many pieces of the clinical puzzle. We need to think critically about all components of clinical pipeline – making assumptions when needed for task.

